
The topography of 
polar ice masses

� Poorly known (ice caps and 
margin of the two ice sheets)
� Changes in surface topography 
are linked to climate fluctuations 
and ice dynamics
� DTM are important for 
processing of satellite data

�SPOT5-HRS acquisitions during 
IPY (reference dataset)

Goal of this study:
Assess the quality of SPOT5-HRS 
DEM over glacier surfaces

SPOT5 – HRS sensor

Key Numbers
- Footprint: up to 120 * 600 km2

- Base-to-height ratio: 0.8
- Pixel size: 5m*10 m

1 STUDY AREA

South-East Alaska / Northern British Columbia
� Rapid retreat since the little ice age (Molnia, 
2007) 
� Contribution to global Sea Level Rise 1970-
2000: 0.04 mm/yr (Larsen et al., 2007)

Fig. 2: HRS images (yellow contour) embedded in a Landsat mosaic 
(2000-01) of major icefields in South-East Alaska. 

Fig. 1: Artist view of SPOT5-HRS 
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DEM Generation

� GCPs extracted by stereoscopic intersection
� DEM generated with PCI-Geomatica

4 Accuracy on ICE FREE regions

� HRS systematically higher than SRTM (7 ± 25m): 
Late seasonal snow, SRTM penetration through the 
canopy, SRTM biases
�A sub-region where HRS is lower by 6 m. ICESAT 
profiles are in agreement with HRS

Fig. 3: Principle of 
GCP extraction  Fig. 4: HRS image, HRS DTM and map indicating 

regions where the DEM was computed  

Fig. 5: Comparison of SRTM and SPOT5-
HRS with ICESAT profiles (N = 201)

Fig. 5: Elevation differences 
between SPOT5-HRS (May 
2004) and SRTM (Feb 2000)
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N Glacier SURGE

� Tributary of Ferris Glacier
� 0.1 km3 (± 5% ) of ice was transferred 
between 2000 and 2004
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Fig. 7: Elevation changes between Feb 2000 and 
May 2004 induced by a surge (0.1 km3 +/- 5%)

Low elevation THINNING

� Thinning rates reaching 10 m/yr
� Burroughs glacier: Illustrate the Role of the 
surface lowering / increased temperature feedback
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Fig. 8: Landsat image (10 
August 2000). Note that 
Burroughs remnant is 
disconnected from any 
accumulation area. The 
elevation changes equals 

changes in ablationBurroughs
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Tab. 1: Temperature (T) rise required to explain the 
enhanced thinning rate (PDD factor = 6 mm w.e/d/°C). It 

equals the “passive” T rise due to the lowering of the 
glacier surface (T lapse rate 6°/km). Strong feedback.
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